Session G MHD convection and dynamos

نویسنده

  • Axel Brandenburg
چکیده

The outer surface layers of the sun show a clear deceleration at low latitudes. This is generally thought to be the result of a strong dominance of vertical turbulent motions associated with strong downdrafts. This strong negative radial shear should not only contribute to amplifying the toroidal field locally and to expelling magnetic helicity, but it may also be responsible for producing a strong prograde pattern speed in the supergranulation layer. Using simulations of rotating stratified convection in cartesian boxes located at low latitudes around the equator it is shown that in the surface layers patterns move in the prograde direction on top of a retrograde mean background flow. These patterns may also be associated with magnetic tracers and even sunspot proper motions that are known to be prograde relative to the much slower surface plasma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitions in rapidly rotating convection driven dynamos.

Numerical simulations of dynamos in rotating Rayleigh-Bénard convection in plane layers are presented. Two different types of dynamos exist which obey different scaling laws for the amplitude of the magnetic field. The transition between the two occurs within a hydrodynamically uniform regime which can be classified as rapidly rotating convection.

متن کامل

The Case for a Distributed Solar Dynamo Shaped by Near-surface Shear

Arguments for and against the widely accepted picture of a solar dynamo being seated in the tachocline are reviewed, and alternative ideas concerning dynamos operating in the bulk of the convection zone, or perhaps even in the near-surface shear layer, are discussed. Based on the angular velocities of magnetic tracers, it is argued that the observations are compatible with a distributed dynamo ...

متن کامل

Oscillatory migratory large-scale fields in mean-field and direct simulations

We summarise recent results form direct numerical simulations of both non-rotating helically forced and rotating convection driven MHD equations in spherical wedge-shape domains. In the former, using perfect-conductor boundary conditions along the latitudinal boundaries we observe oscillations, polarity reversals and equatorward migration of the large-scale magnetic fields. In the latter we obt...

متن کامل

Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions.

The onset of dynamo action is investigated within the context of a newly developed low Rossby, low magnetic Prandtl number, convection-driven dynamo model. This multiscale model represents an asymptotically exact form of an α^{2} mean field dynamo model in which the small-scale convection is represented explicitly by finite amplitude, single mode solutions. Both steady and oscillatory convectio...

متن کامل

Parameter dependences of convection-driven dynamos in rotating spherical fluid shells

For the understanding of planetary and stellar dynamos an overview of the major parameter dependences of convection driven dynamos in rotating spherical fluid shells is desirable. Although the computationally accessible parameter space is limited, earlier work is extended with emphasis on higher Prandtl numbers and uniform heat flux condition at the outer boundary. The transition from dynamos d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007